If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+15t=14
We move all terms to the left:
4t^2+15t-(14)=0
a = 4; b = 15; c = -14;
Δ = b2-4ac
Δ = 152-4·4·(-14)
Δ = 449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{449}}{2*4}=\frac{-15-\sqrt{449}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{449}}{2*4}=\frac{-15+\sqrt{449}}{8} $
| a/1.5=21 | | 4x+12=12-3x | | 34=2(7+b) | | 8y+9y=10 | | 6x-18=4(2x-3)-(2x-6) | | 6x+13=16x-7,x | | c/20-40=59 | | 3/12=x/x+12 | | -40+2n=4n-8(n+3) | | 10x-1=14x-37,x | | (4x–3)=45 | | 3p−7=2 | | -1=2n-3 | | x+3x+1+x-11=180 | | r3+ -6=-4 | | 15=v2 | | 3=9-2f | | -18h-12h=12 | | 15-3x=3x-9 | | -16t+14t=-6 | | 18=15v-6v | | -15f-12=-16f | | 760=4v | | -41=x/8 | | 5x+5+25+4x+3+19=180 | | 23=2t | | 6−2z=4 | | 22g=418 | | -4w-1/2=3/2w-6/5 | | -17=-5=3w | | -v/6=-44 | | −2(3x+2)−−2x+4=40 |